Cubic Formula 2

Pub: Sep. 13, 2014 | Wri: a few years ago


\[ \def \l {\left} \def \r {\right} \def \f {\frac} \def \b#1{\l(#1\r)} \def \root [#1]#2{\sqrt[\leftroot{2}\uproot{2}\scriptstyle #1]{#2}} t^3+pt+q = 0 \\ t_1 = u+v \qquad p = -3uv \qquad q = -(u^3+v^3) \\ t^3 - 3uvt - (u^3+v^3) = 0 \\[6pt] \def \p {\phantom} \require{enclose} \begin{split} & \kern1.1ex t^2 + (u+v)t + (u^2-uv+v^2) \\[-2pt] t-(u+v) & \enclose{longdiv}{t^3-3uvt-(u^3+v^3)\hspace{8.8ex}} \\[-2pt] & \kern0.7ex \begin{split} & t^3-(u+v)t^2 \\[-2pt] & \overline{\p{t^3-\;}(u+v)t^2}-3uvt \\[-2pt] & \p{t^3-\;}(u+v)t^2-(u+v)^2t \\[-2pt] & \p{t^3-\;}\overline{\p{(u+v)t^2-\;}(u^2+2uv+v^2)t}-3uvt \\[-2pt] & \p{t^3-\;}\p{(u+v)t^2-\;}(u^2-uv+v^2)t-(u^3+v^3) \\[-2pt] & \p{t^3-\;}\p{(u+v)t^2-\;} \underline{(u^2-uv+v^2)t-(u+v)(u^2-uv+v^2)} \\[-2pt] & \p{t^3-\;}\p{(u+v)t^2-\;}0 \\[-2pt] \end{split} \end{split} \\ t^2 + (u+v)t + u^2-uv+v^2 = 0 \\ \begin{split} t &= \f{-(u+v) \pm \sqrt{u^2+2uv+v^2-4u^2+4uv-4v^2}}{2} \\ &= \f{-(u+v) \pm \sqrt{-3u^2+6uv-3v^2}}{2} \\ &= \f{-(u+v) \pm \sqrt{-3(u-v)^2}}{2} \\ &= -\f{1}{2}(u+v) \pm \f{\sqrt{3}}{2}\sqrt{-(u-v)^2} \end{split} \\~\\[3pt] \text{$u-v$ can only be real or purely imaginary.} \\[9pt] \text{If $u-v$ is real,} \\ \sqrt{-(u-v)^2} = (u-v)i \\ \text{If $u-v$ is imaginary,} \\ \sqrt{-(u-v)^2} = -(u-v)i \\[15pt] \text{This amounts to $t_2$ and $t_3$ switching places if we let} \\ \sqrt{-(u-v)^2} = (u-v)i \\[15pt] \begin{split} t_1 & = u+v \\ t_2 & = -\f{1}{2}(u+v) + \f{\sqrt{3}}{2}(u-v)i \\ t_3 & = -\f{1}{2}(u+v) - \f{\sqrt{3}}{2}(u-v)i \end{split} \\ \]