\(
\def \l {\left}
\def \r {\right}
\def \f {\frac}
\def \b#1{\l(#1\r)}
\def \root [#1]#2{\sqrt[\leftroot{2}\uproot{2}\scriptstyle #1]{#2}}
\def \stag#1{\quad (#1)}
\DeclareMathOperator{\acoth}{acoth}
\)
Denesting $\sqrt{x\pm\sqrt{y}}$
Pub: Sep. 14, 2014 | Wri: a few years ago
\[
\begin{split}
& \sqrt{x+\sqrt{y}} \\
& \begin{split}
\! = \; & \sqrt{a}+\sqrt{b} \\
\! = \; & \sqrt{(\sqrt{a}+\sqrt{b})^2} \\
\! = \; & \sqrt{a+2\sqrt{ab}+b} \\
\! = \; & \sqrt{a+b+\sqrt{4ab}}
\end{split} \\
\end{split}
\qquad
\begin{split}
& \sqrt{x-\sqrt{y}} \\
& \begin{split}
\! = \; & \sqrt{a}-\sqrt{b} \\
\! = \; & \sqrt{(\sqrt{a}-\sqrt{b})^2} \\
\! = \; & \sqrt{a-2\sqrt{ab}+b} \\
\! = \; & \sqrt{a+b-\sqrt{4ab}}
\end{split} \\
\end{split} \\[48pt]
x = a + b \stag{1}
\qquad
y = 4ab \stag{2} \\[6pt]
b = x-a \stag{3} \\[6pt]
(3) \longrightarrow (2) \\[6pt]
\begin{split}
y &= 4a(x-a) \\[3pt]
&= 4ax - 4a^2
\end{split} \\[15pt]
4a^2 - 4ax + y = 0 \\[3pt]
a^2 - ax + \f{1}{4}y = 0 \\[3pt]
a = \f{x \pm \sqrt{x^2-y}}{2} \\[3pt]
\begin{split}
b &= x-a \\[3pt]
&= \f{2x - \b{x \pm \sqrt{x^2-y}}}{2} \\[3pt]
&= \f{x \mp \sqrt{x^2-y}}{2}
\end{split} \\[42pt]
a = \f{x+\sqrt{x^2-y}}{2}
\qquad
b = \f{x-\sqrt{x^2-y}}{2} \\[12pt]
\sqrt{x\pm\sqrt{y}}
= \sqrt{\f{x+\sqrt{x^2-y}}{2}} \pm \sqrt{\f{x-\sqrt{x^2-y}}{2}}
\]